Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Am J Physiol Lung Cell Mol Physiol ; 323(1): L14-L26, 2022 07 01.
Article in English | MEDLINE | ID: covidwho-1861686

ABSTRACT

Critically ill patients manifest many of the same immune features seen in coronavirus disease 2019 (COVID-19), including both "cytokine storm" and "immune suppression." However, direct comparisons of molecular and cellular profiles between contemporaneously enrolled critically ill patients with and without severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are limited. We sought to identify immune signatures specifically enriched in critically ill patients with COVID-19 compared with patients without COVID-19. We enrolled a multisite prospective cohort of patients admitted under suspicion for COVID-19, who were then determined to be SARS-CoV-2-positive (n = 204) or -negative (n = 122). SARS-CoV-2-positive patients had higher plasma levels of CXCL10, sPD-L1, IFN-γ, CCL26, C-reactive protein (CRP), and TNF-α relative to SARS-CoV-2-negative patients adjusting for demographics and severity of illness (Bonferroni P value < 0.05). In contrast, the levels of IL-6, IL-8, IL-10, and IL-17A were not significantly different between the two groups. In SARS-CoV-2-positive patients, higher plasma levels of sPD-L1 and TNF-α were associated with fewer ventilator-free days (VFDs) and higher mortality rates (Bonferroni P value < 0.05). Lymphocyte chemoattractants such as CCL17 were associated with more severe respiratory failure in SARS-CoV-2-positive patients, but less severe respiratory failure in SARS-CoV-2-negative patients (P value for interaction < 0.01). Circulating T cells and monocytes from SARS-CoV-2-positive subjects were hyporesponsive to in vitro stimulation compared with SARS-CoV-2-negative subjects. Critically ill SARS-CoV-2-positive patients exhibit an immune signature of high interferon-induced lymphocyte chemoattractants (e.g., CXCL10 and CCL17) and immune cell hyporesponsiveness when directly compared with SARS-CoV-2-negative patients. This suggests a specific role for T-cell migration coupled with an immune-checkpoint regulatory response in COVID-19-related critical illness.


Subject(s)
COVID-19 , Respiratory Insufficiency , B7-H1 Antigen , Chemokines , Critical Illness , Humans , Prospective Studies , SARS-CoV-2 , Tumor Necrosis Factor-alpha
2.
J Breath Res ; 16(3)2022 06 15.
Article in English | MEDLINE | ID: covidwho-1784286

ABSTRACT

With the continued presence of COVID-19 worldwide, it has been a challenge for the breath research community to progress with clinical studies and travel restrictions have also limited the opportunities to meet up, share ideas and celebrate the latest advances. The Breath Biopsy Conference 2021 offered the chance to catch up with the latest breath research and to share progress that researchers in the community have been able to make in these difficult times. Limited opportunities for clinical research have led many in the field to look more closely at different methods for breath collection and have contributed to the growing calls for consistent standards in how results are reported, shared and even how breath studies themselves are carried out. As such, standardization was a key theme for this year's event and featured prominently in the keynotes, discussions and throughout many of the presentations. With over 900 registrants, almost 400 live attendees and 16 speakers, the Breath Biopsy Conference continues to bring together breath research leaders from around the world. This article provides an overview of the highlights from this event.


Subject(s)
Breath Tests , COVID-19 , Biopsy , Humans , Reproducibility of Results
3.
J Breath Res ; 15(3)2021 06 30.
Article in English | MEDLINE | ID: covidwho-1262052

ABSTRACT

The global outbreak of Sars-CoV-2 commencing early in 2020 had a dramatic impact on breath research, imposing abrupt restrictions but also presenting unforeseen opportunities. Taking place against the background of the COVID-19 pandemic, the 2020 Breath Biopsy Conference provided the breath research community with a platform to showcase and discuss the latest findings, including COVID-19 related research. As with most conferences under the present circumstance, it differed from its predecessor meetings by shifting to a virtual format, but retained its broad scope and interactive nature. The conference centred on four key themes, featuring applications of volatile organic compounds, breath biomarkers for liver disease, study design and data analytics, and, notably this year, breath-based endeavours to detect COVID-19 infection. This meeting report summarizes the events of the conference and spotlights selected contributions.


Subject(s)
Biomedical Research , Breath Tests/methods , Biomarkers/analysis , Biopsy , COVID-19/epidemiology , COVID-19/virology , Humans , Lipid Peroxidation , Pandemics , SARS-CoV-2/physiology , Volatile Organic Compounds/analysis
4.
Crit Care ; 25(1): 148, 2021 04 19.
Article in English | MEDLINE | ID: covidwho-1191483

ABSTRACT

BACKGROUND: Analyses of blood biomarkers involved in the host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral infection can reveal distinct biological pathways and inform development and testing of therapeutics for COVID-19. Our objective was to evaluate host endothelial, epithelial and inflammatory biomarkers in COVID-19. METHODS: We prospectively enrolled 171 ICU patients, including 78 (46%) patients positive and 93 (54%) negative for SARS-CoV-2 infection from April to September, 2020. We compared 22 plasma biomarkers in blood collected within 24 h and 3 days after ICU admission. RESULTS: In critically ill COVID-19 and non-COVID-19 patients, the most common ICU admission diagnoses were respiratory failure or pneumonia, followed by sepsis and other diagnoses. Similar proportions of patients in both groups received invasive mechanical ventilation at the time of study enrollment. COVID-19 and non-COVID-19 patients had similar rates of acute respiratory distress syndrome, severe acute kidney injury, and in-hospital mortality. While concentrations of interleukin 6 and 8 were not different between groups, markers of epithelial cell injury (soluble receptor for advanced glycation end products, sRAGE) and acute phase proteins (serum amyloid A, SAA) were significantly higher in COVID-19 compared to non-COVID-19, adjusting for demographics and APACHE III scores. In contrast, angiopoietin 2:1 (Ang-2:1 ratio) and soluble tumor necrosis factor receptor 1 (sTNFR-1), markers of endothelial dysfunction and inflammation, were significantly lower in COVID-19 (p < 0.002). Ang-2:1 ratio and SAA were associated with mortality only in non-COVID-19 patients. CONCLUSIONS: These studies demonstrate that, unlike other well-studied causes of critical illness, endothelial dysfunction may not be characteristic of severe COVID-19 early after ICU admission. Pathways resulting in elaboration of acute phase proteins and inducing epithelial cell injury may be promising targets for therapeutics in COVID-19.


Subject(s)
COVID-19/blood , Endothelial Cells/virology , Epithelial Cells/virology , Host Microbial Interactions , Inflammation/virology , Adult , Aged , Biomarkers/blood , COVID-19/epidemiology , COVID-19/therapy , Case-Control Studies , Female , Humans , Inflammation/blood , Intensive Care Units , Male , Middle Aged , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL